Article 5214

Title of the article

SOME PROBLEMS OF THE THEORY OF LINEAR DYNAMIC NONANTAGONISTIC GAMES 

Authors

Pasikov Vladimir Leonidovich, Candidate of physical and mathematical sciences, associate professor, sub-department of natural and mathematical disciplines, Orsk branch of Orenburg State Institute of Management (4 Orskoe highway, Orsk, Orenburg region, Russia), pasikov_fmf@mail.ru 

Index UDK

517.977 

Abstract

Background. The paper discusses some problems of optimal control, namely, the theory of dynamic games when the dynamics of a game is described by the linear integrodifferential and integral vector Volterra equations. The aim is to solve the problems of optimization of distance-type functionals mainly in the sense of Nash.
Materials and methods. To solve these problems, the author built a modification of the famous extreme construction of the academician N. N. Krasovskiy developed for ordinary differential systems. The centerpiece of this modification is the new definition of the position of the game for which it is necessary to calculate the total memory to manage stress, that greatly complicates the entire study compared with the case of ordinary differential systems.
Results and conclusions. The considered method can be extended to the case of nonlinear integrodifferential and integral systems. The paper presents significantly new results that complement and extend the general theory of dynamic games. 

Key words

integrodifferential equation of Volterra, Volterra integral equation, control action, measurable function, position of the game, optimal strategy. 

Download PDF
References

1. Pasikov V. L. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fizikomatematicheskie nauki [University proceedings. Volga region. Physical and mathematical sciences]. 2013, no. 2 (26), pp. 75–86.
2. Krasovskiy N. N. Igrovye zadachi o vstreche dvizheniy [Game problems on motion meeting]. Moscow: Nauka, 1970, 420 p.
3. Subbotin A. I., Chentsov A. G. Optimizatsiya garantii v zadachakh upravleniya [Guarantee optimization in control problems]. Moscow: Nauka, 1981, 288 p.
4. Gorokhovik V. V., Kirillova F. M. Upravlyaemye sistemy [Controllable systems]. 1971, no. 10, pp. 3–9.
5. Gabasov R., Kirillov F. Kachestvennaya teoriya optimal'nykh protsessov [Qualitative theory of optimal processes]. Moscow: Nauka, 1971, 508 p.
6. Pasikov V. L. Vestnik Yuzhno-ural'skogo gosudarstvennogo universiteta. Ser. Matematika. Mekhanika. Fizika [Bulletin of South-Ural State University. Series: Mathematics. Mechanics. Physics]. 2012, vol. 7, no. 34 (293), pp. 33–42.
7. Pasikov V. L. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fizikomatematicheskie nauki [University proceedings. Volga region. Physical and mathematical sciences]. 2011, no. 2 (18), pp. 58–70.
8. Pasikov V. L. Differentsial'nye uravneniya [Differential equations]. 1986, vol. XXII, no. 5, pp. 907–909.

 

Дата создания: 19.08.2014 09:33
Дата обновления: 02.09.2014 11:28